Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(12)2022 11 30.
Article in English | MEDLINE | ID: covidwho-2143723

ABSTRACT

As for the case of SARS-CoV-2, genome sequencing of influenza viruses is of potential interest to raise and address virological issues. Recently, false-negativity of real-time reverse transcription-PCR (qPCR) assays that detect influenza A/H3N2 virus RNA were reported and associated with two mutations (A37T and C161T) in the Matrix-encoding (M1) gene located on viral segment 7. This triggered a national alert in France. The present study sought to assess the association between the presence of these mutations and potential false negative results of influenza A/H3N2 virus RNA detection by commercialized qPCR assays at the clinical virology laboratory of our university hospitals in southern France. This study focused on the genetic diversity in the M1 gene and segment 7 of 624 influenza A/H3N2 virus genomes obtained from respiratory samples having tested qPCR-positive with M1 gene-targeting assays in our clinical virology laboratory. A total of 585 among the 624 influenza A/H3N2 virus genomes (93.7%) were of clade 3C.2a1b.2a.2, and 39 (6.3%) were of clade 3C.2a1b.1a. M1 gene substitutions A37T and C161T were both present in 582 (93.3%) genomes, only of clade 3C.2a1b.2a.2. Substitution A37T was present in 621 (99.5%) genomes. Substitution C161T was present in 585 genomes (93.8%), all of clade 3C.2a1b.2a.2. Moreover, 21 other nucleotide positions were mutated in ≥90% of the genomes. The present study shows that A37T/C and C161T mutations, and other mutations in the M1 gene and segment 7, were widely present in influenza A/H3N2 virus genomes recovered from respiratory samples diagnosed qPCR-positive with commercialized assays.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , SARS-CoV-2/genetics , Influenza A virus/genetics , RNA, Viral/genetics , Phylogeny
2.
Viruses ; 14(7)2022 07 09.
Article in English | MEDLINE | ID: covidwho-1964120

ABSTRACT

BACKGROUND: Most new SARS-CoV-2 epidemics in France occurred following the importation from abroad of emerging viral variants. Currently, the risk of new variants being imported is controlled based on a negative screening test (PCR or antigenic) and proof of up-to-date vaccine status, such as the International Air Transport Association travel pass. METHODS: The wastewater from two planes arriving in Marseille (France) from Addis Ababa (Ethiopia) in December 2021 was tested by RT-PCR to detect SARS-CoV2 and screen for variants. These tests were carried out between landing and customs clearance and were then sequenced by MiSeq Illumina. Antigenic tests and sequencing by NovaSeq were carried out on respiratory samples collected from the 56 passengers on the second flight. RESULTS: SARS-CoV-2 RNA suspected of being from the Omicron BA.1 variant was detected in the aircraft's wastewater. SARS-CoV2 RNA was detected in 11 [20%) passengers and the Omicron BA.1 variant was identified. CONCLUSION: Our work shows the efficiency of aircraft wastewater testing to detect SARS-CoV-2 cases among travellers and to identify the viral genotype. It also highlights the low efficacy of the current control strategy for flights entering France from outside Europe, which combines a requirement to produce a vaccine pass and proof of a negative test before boarding.


Subject(s)
COVID-19 , SARS-CoV-2 , Aircraft , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , Ethiopia , Europe , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Vaccination , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL